MINT interessant gestalten (I)

Das neue Schuljahr beginnt. Mit neuen und alten Lerngruppen. Mit bewährten und unbekannten, den Unterricht neu belebenden Inhalten und Methoden. Ich werde in loser Folge praxisnahe Ideen aus der Didaktik des MINT-Unterrichts vorstellen. Auch um Anregungen zur Motivation von Schülerinnen und Schüler zu geben, um ein im folgenden Tweet beschriebenes Desinteresse abbauen zu helfen.

 

Mit einer Empfehlung aus der analogen Welt (aka Buchrezension) starte ich heute die Reihe „Matheunterricht interessant gestalten“. Es geht um das Buch DIE WICHTIGSTEN ZAHLEN UND IHRE GESCHICHTEN von Prof. Beutelspacher.

Der C.-H. Verlag bewirbt das Buch so:

Vor mehr als 20000 Jahren aus praktischen Gründen erfunden, haben Zahlen für viele etwas Magisches. Albrecht Beutelspacher erzählt die spannendsten Geschichten rund um die wichtigsten Zahlen. Ein Buch, das sich ganz ohne mathematische Vorkenntnisse erschließt und in dem jeder seine Lieblingszahl entdecken wird.

Über 30 Prozent aller Zahlen beginnen mit 1, und so steht auch die Zahl, mit der das Zählen beginnt, am Ausgangspunkt dieser kurzweiligen Reise durch die Welt der Zahlen. Mit der 2 zerfällt die Welt in zwei Teile, in der 3 wächst sie wieder zusammen. Die 4 ist die Zahl der Orientierung, die 5 die Zahl der Natur und mit der 6 kommt endlich Ordnung in die Welt. Die 7 Weisen waren eigentlich 22, und dafür, dass die Woche ausgerechnet 7 Tage hat, gibt es keine rationalen Gründe. Die 0 hat lange Zeit gefehlt und war, als sie vor 2000 Jahren in Indien erfunden wurde, längst überfällig. Wäre es nach der Französischen Revolution gegangen, hätte ein Tag heute 10 Stunden mit jeweils 100 Minuten, von denen jede aus 100 Sekunden bestünde. Die wilde 13 zerstört die perfekte innere Balance der 12 – muss sie aber deshalb gleich Unglück bringen? Die 5 607 249 ist die größte Zahl, auf die je ein Mensch gezählt hat, aber nicht die größte in diesem Buch. Mit der Kreiszahl p betreten wir das Reich der transzendenten, mit der –1 das Reich der negativen Zahlen. Deren scheinbare Paradoxien illustriert vortrefflich der folgende Witz, der sich ebenfalls in diesem wunderbar leichtfüßig geschriebenen Buch findet: Ein Professor steht vor einem Hörsaal. Er sieht fünf Studierende den Hörsaal betreten und nach einiger Zeit sechs Studierende herauskommen. Da denkt sich der Prof: „Wenn jetzt noch einer reingeht, ist der Hörsaal wieder leer.

Zur Didaktik ...

Lassen Sie mich Ihnen erst einmal den Autor vorstellen. Meinen ersten Kontakt mit dem Hochschulprofessor für Geometrie und Diskrete Mathematik bekam ich durch den Artikel im Licht im Zahlendschungel im SPIEGEL (2004). Als hessische Lehrkraft, noch dazu in der Nähe Gießens arbeitend, nutzte ich mehrfach die Gelegenheit, mit meinen Schülerinnen und Schülern „sein“ Museum zu besuchen. Oder als hessischer Fortbildner sein Angebot zu nutzen, unterrichtende Mathematiklehrkräfte experimentelle Ideen zum MU weiterzugeben, stets verbunden mit einer konkreten Vermittlung seiner vielen Praxismodelle im Museum. Wer seinem didaktischen Verständnis nachspüren möchte, dem empfehle ich:

 

Beutelspacher hatte noch etwas im Blick: Die Beschäftigung mit der Angst vor dem MU. Das Buch greift die Ansätze aus diesem Artikel auf. Man glaubt gar nicht, welche Geschichten sich hinter den Zahlen 1,2,3, … verbergen. Der Autor nimmt die Leserinnen und Leser, ob jung oder alt mit in die zeithistorische Reise von 500 v. Chr. bis heute. Einfach beeindruckend, wie viel Mathematik sich in Geschichte, Musik, Kunst, Geografie u. v. m. wiederfindet. Was die Akzeptanz dieses Buches deutlich erleichtert, ist die Aufteilung in viele, viele kleine Häppchen. Sehr leicht verdaulich, weil eben im Großen und Ganzen auch von „Otto Normal Verbraucher“ verständlich geschrieben, wie einige Pressestimmen bestätigen. Die Schülerinnen und Schüler profitieren darüber hinaus, weil ihnen eine Ahnung vermittelt wird, was sich hinter der Wissenschaft Mathematik so alles verbirgt. Denn Beutelspacher beschreibt Phänomene, mathematische Modelle (Axiomatik, Geometrie, Analysis) und macht – mit Blick auf digitale Technologien – an geeigneten Stellen darauf aufmerksam, dass erst diese Werkzeuge die „Wahrheit“ (aka den Beweis) einiger mathematischen Vermutungen erbracht haben.

... und Methodik I ...

Wir Lehrkräfte können mehrfach Gewinn aus dem Buch ziehen:

Die Anregungen aus seinen Fortbildungen habe ich z. B. immer gerne bei der Einführung eines im Unterricht zu behandelnden Mathe- Themas genutzt. Meine Schülerinnen und Schüler haben mir – selten genug – immer dann 100 % Aufmerksamkeit geschenkt, wenn ich kulturhistorische Bezüge hergestellt habe, wenn ich mit Experimenten begonnen habe, wenn ich plötzlich mit einem Musikstück die Unterrichtseinheit begonnen habe, etwa bei der Einführung der Zahl π: Ich kam in die Klasse und spielte ihnen einen Titel von Kate Bush vor, verbunden mit der Frage: „Was hat diese Musikerin möglicherweise motiviert, dieses Lied zu kreieren?“

 

 

Der Text und – für mich – die Musik gibt möglicherweise Auskunft: Die Unendlichkeit der Ziffernfolge… Ich reicherte das Ganze noch an mit historischen Hinweisen, wie eben im Buch von Beutelspacher im gleichnamigen Kapitel beschrieben. Und, ganz aktuell bietet sich zu diesem Thema auch ein Bezug zur Forschung an:

 

Wer WELT Abonnent ist, kann hier ein Interview mit der Leiter der Schweizer Forschungsgruppe finden. Schülerinnen und Schüler fallen eine ganze Reihe von Fragen ein. Auch die, wozu das gut sein soll. Und schon war der Advance Organizer, einer meiner bevorzugten Initiierungsmethode für die Unterrichtseinheit fertig. Denn darum geht uns Lehrkräften doch: Zum Nachdenken anregen, Schülerinnen und Schüler zu motivieren, sich mal selbst auf den Weg zu machen. Übrigens bieten sich für einen fächerübergreifenden Ansatz Querverbindungen zu den Fächern Englisch/ Deutsch (Thema Lyrik) an.

 

... und Methodik II

Auch bei den vom Autor vorgestellten Beweistechniken können Lehrkräfte profitieren: Ich habe meine Schülerinnen und Schüler stets „verloren“, wenn es um Widerspruchsbeweise, vollständige Induktion und weitere Beweisstrategien ging. Hier ein Beispiel, von dem ich glaube, dass der Begleittext von Beutelspacher möglicherweise ein besseres Verständnis befördern hilft. Es geht um den Widerspruchsbeweis zu „√2 ist nicht rational“. Die Schulbuchvarianten ähneln der Wikipediaversion (siehe unten links), die ich nun der Beutelspacher- Variante gegenüberstelle. Fragen Sie einmal Ihre Schülerinnen und Schüler, welche der beiden Varianten besser „verstanden“ wird (zur Vergrößerung einfach anklicken). Meine Vermutung, die textlastigere rechte Variante:

 

 

Schlussbemerkung

Zusammenfassend kann es für dieses kleine handliche Bändchen nur eine klare Empfehlung geben: Für unseren Matheunterricht, für unsere Schülerinnen und Schüler, wie auch für all die Zeitgenossen, die immer wieder mit dem Spruch „In Mathe war ich auch immer schlecht.” aufwarten. Wie wäre es mit einer ergänzenden Aussage, die ich kürzlich in meinem Bekanntenkreis gehört habe: „Hätte ich dieses Buch gekannt, hätte ich vielleicht eine Chance gehabt, aus dem Matheunterricht mehr mitzunehmen …”

Und, wer Geschmack gefunden hat: Der DLF hat in einem Podcast mit dem Titel Wie Mathematik unser Leben prägt zwei spannende Sachbücher vorgestellt. Gerne mal reinhören …

In diesem Sinne

Stay tuned

 

Bildnachweis:

Titel- bzw. Coverbild: @C. H. Beck- Verlag

Beweistechnik, links: @Wikipedia

Beweistechnik, rechts: @Beutelspacher: Auszug aus vorgestelltem Buch, S. 136

Transformation analog – digital: Mathematikunterricht

In diesem Beitrag geht es um die digitale Transformation im Mathematikunterricht (MU). Es kommen Fachdidaktikerinnen und -didaktiker zu Wort, die den MU nicht nur analysiert, sondern – und das ist sehr lobenswert – auch Praxisbeiträge entwickelt haben. Viele Unterrichtsmaterialien sind sofort nutzbar, andere dienen als Anregung bzw. benötigen Vorbereitungszeit.

Doch der Reihe nach. Aus aktuellem Anlass, die Bruchrechnung war wieder Thema in einem kürzlich geposteten Tweet:

Mir geht es nicht um die – sicher berechtigte – (Nach)Frage zum Bewertungsschema. Mir geht es um das Päckchen rechnen. Muss das im Jahr 2020 noch sein?

Seit PISA (2001) wird der Notwendigkeit einer Kompetenzorientierung das Wort geredet. In Aus- und Fortbildungen der Mathematiklehrkräfte wird hervorgehoben, dass sich laut Wittmann1 ein guter Mathematikunterricht primär ausrichtet an

  • der Ausweisung der Lernziele (im Kontext zur Bruchrechnung etwa: argumentieren, darstellen, mit formalen Elementen umgehen)
  • einem entdeckenden Lernen als Unterrichtsprinzip
  • der Forderung nach Anwendungs- und Strukturorientierung mit expliziten Verweisen auf arithmetische und geometrische Muster
  • der Forderung nach produktivem Üben (und dazu gehört ganz sicher nicht das Päckchen rechnen)

In einer Studie zum Mathematikunterricht im 9. Jahrgang schließen die beiden Autorinnen Rjosk und Henschel einen Beitrag mit folgenden Fazit ab2:

Insgesamt weisen die Ergebnisse in Übereinstimmung mit früheren Studien darauf hin, dass der Lernerfolg weniger damit zusammenhängt, wie Lehrkräfte das Lernen im Unterricht organisieren, also welche Lern- und Organisationsformen oder Methoden sie einsetzen. Wichtiger ist vielmehr, wie gut Schülerinnen und Schüler dazu angeregt werden, sich intensiv mit dem Unterrichtsthema auseinanderzusetzen und wie sehr sich die Jugendlichen konstruktiv unterstützt und ernst genommen fühlen. 

Zurück zur Bruchrechnung. Welche digital unterstützte Methoden bieten sich hier an?  Der erste Vorschlag setzt auf die Einführung eines neuen (OER)-Lehrbuchs, der zweite auf die Nutzung eines Web-Tools, auch zum Zwecke einer ersten Diagnostik:

    • Bruchrechnen – Bruchzahlen & Bruchteile greifen und begreifen, ein neuartiges Lehr- und Lernbuch zum Selbstlernen und zur Benutzung im Schulunterricht (TU München). Das Buch gibt es auch in einer E-Book-Variante, allerdings nur für die iOS-Welt. Ein User “smoothlobster” hat das Buch unter der Überschrift „Da steckt wirklich was dahinter“ wie folgt rezensiert: Das Buch macht nicht nur Spaß, man merkt auch, dass die Inhalte wirklich sinnvoll und didaktisch aufgearbeitet wurden. Nicht einfach nur stumpfes Üben mit bunten Bildchen, sondern Lernen mit System. Auf solche Schulbücher habe ich lange gewartet!

Update (07.06.2021): Evaluation

 

  • Unterstützung aus Digitalien kann möglicherweise die App Anton geben. Sie ist in der Primarstufe sehr beliebt und die Anbieter haben ihr Angebot nun auch auf Sekundarstufe 1 ausgeweitet, sowohl für das Fach Deutsch als auch für das Fach Mathematik. Vieles aus dem Lehrplan findet sich hier wieder, z. B. Bruchrechnung. Man wird sich anfangs dazu setzen müssen. Zum einen, um zu verstehen, wie die Schülerinnen und Schüler (SuS) das Kalkül (falsch) anwenden. Zum anderen, um die SuS im Umgang mit dem Tool zu begleiten. Die Tipps sind – so meine Vermutung – nicht immer für die SuS verständlich genug geraten.

Da wir uns gerade in der Mittelstufe (Sek. I) bewegen, hier noch weitere Beispiele:

  • Längenmaße greifbar machen. Wie gut schätzen Kinder Distanzen ein?  Ein Unterrichtsprojekt aus Österreich unter Nutzung von iPads (Maßband, Keynote) . Was gefällt mir daran?
    • Geeignet für einen fächerübergreifenden Ansatz (Mathematik, Sachunterricht)
    • Protokoll eines Stundenablaufs
    • Aufträge für stärkere SuS möglich (durch herausfordernde Fragestellungen, z.B. Messung größerer Distanzen)
    • Sehr praxisnah

Kosima ist ein langfristig angelegtes Forschungs- und Entwicklungsprojekt für den Mathematikunterricht der Sekundarstufe I. Im Projekt werden vielfältige Aspekte von mathematischen Lernprozessen in sinnstiftenden Kontexten untersucht. Dabei werden Schritte der Entwicklung- und Erforschung von Lernarrangements, der Fortbildung und Auswertung eng aneinander gekoppelt und die Arbeit aller entscheidenden Partner eng miteinander verzahnt. Hochschule, Schulbuchverlag (Cornelsen) und Lehrkräfte aus der Praxis befassen sich mit der Entwicklung und Untersuchung von Lernarrangements.

  • Das Wohnungsprojekt, ein Unterrichtsprojekt von Jan Vedder mit seinem Fazit:
    Die größte Stärke des Wohnungsprojekts besteht für mich darin, dass die Lernenden sich die Lernschritte möglichst eigenständig erschließen, das Erlernte anwenden & teilen sowie ihr eigenes Lernen planen und reflektieren. Der Prozess des Lernens und der Lernorganisation liegt bei den Schüler*innen selbst. Mit der verbundenen authentischen Lernsituation und einem ‘echtem’ Lerninteresse (Wieviel Farbe brauche ich denn nun?) werden mathematische Themen für die Lernenden relevant. Diese Ausgangslage ließe sich auch fächerübergreifend ausbauen. (…) So ließen sich in dieses Projekt einfach und unkompliziert Fachaspekte aus den Fächern Deutsch (Expose schreiben und layouten), Chemie (Farben herstellen), Wirtschaft und Politik (Wohnungsmarkt, Versicherungen, Mietpreise etc.), Erdkunde (urbane Lebensräume u.a.), Kunst (Modellbau, 3D-Druck der Wohnungen), Werken (Möbelbau) und vielerlei mehr integrieren und zu einem großen Ganzen mit reziproken Bezügen verschmelzen.

Bevor ich gleich auf die Oberstufe überleite, hier noch ein Angebot für die Primarstufe:

  • PIKAS (Prozessbezogene und Inhaltsbezogene Kompetenzen durch die Anregung fachbezogener Schulentwicklung) ist ein Angebot des Deutschen Zentrums für Lehrerbildung Mathematik (Kooperationsprojekt der TU Dortmund und Uni Münster). Im Projekt PIKAS werden Materialien zur Weiterentwicklung des Mathematikunterrichts in der Primarstufe erarbeitet. Es geht sowohl darum, Basiskompetenzen zu sichern, als auch darum, Problemlösefähigkeiten zu entwickeln. Mathematikunterricht soll die prozessbezogenen Kompetenzen und die inhaltsbezogenen Komptenzen der Lernenden entwickeln. Zehn Doppelhaushälften bieten Ihnen dort forschungsbasierte, praxiserprobte Materialien und Konzeptionen zur Umsetzung guten Mathematikunterrichts mit Videos, Handreichungen, Links und vielem mehr.

MU in der gymnasialen Oberstufe: Kompetenzmodell

Ich will nicht verheimlichen, dass die Entscheidung der Länder nach dem PISA-Schock Bildungsstandards einzuführen, kritisch gesehen wird (siehe “Brandbrief“). Gleichwohl gibt es eine in etwa gleichstarke Professorinnen- und Professorengruppe, die die Kritik zurückweisen. Gilbert Greefrath, Didaktikprofessor in Münster und Mitunterzeichner des Briefs3:

Es gibt ein Problem bei den Mathematikfähigkeiten, da sind wir uns einig. Die Frage ist aber, ob die Bildungsstandards Teil des Problems sind oder Teil der Lösung. Der Unterricht hat sich durch die Standards bereits positiv verändert. Die Kompetenzorientierung sorgt dafür, dass die Schüler gerade nicht – wie noch in den neunziger Jahren üblich – Fertigkeiten abspulen, ohne die Inhalte zu verstehen. Der Einfluss der Bildungsstandards hat aber auch Grenzen. So könnten etwa Prüfungsaufgaben im Abitur bestimmte in den Standards verlangte Kompetenzen nicht so gut abrufen, wie es im Unterricht möglich ist, etwa die in den Bildungsstandards verlangte Kompetenz „Mathematisches Kommunizieren.“

Was nun genau fordert die Kultusministerkonferenz (KMK) beim Übergang in die gymnasiale Oberstufe (Sek. II)4:

Bildungstheoretische Grundlagen des Mathematikunterrichts sind der Allgemeinbildungsauftrag wie auch die Anwendungsorientierung des Unterrichtsfaches Mathematik. Demnach wird Mathematikunterricht durch drei Grunderfahrungen geprägt, die jeder Schülerin und jedem Schüler vermittelt werden müssen:

  • Mathematik als Werkzeug, um Erscheinungen der Welt aus Natur, Gesellschaft, Kultur, Beruf und Arbeit in einer spezifischen Weise wahrzunehmen und zu verstehen,
  • Mathematik als geistige Schöpfung und auch deduktiv geordnete Welt eigener Art,
  • Mathematik als Mittel zum Erwerb von auch über die Mathematik hinausgehenden, insbesondere heuristischen Fähigkeiten

Die Kompetenzbereiche haben folgende Struktur5:

Und weiter heißt es (u.a.):

Die allgemeinen mathematischen Kompetenzen werden von den Lernenden nur in der aktiven Auseinandersetzung mit Fachinhalten erworben. Dabei beschreiben die drei Anforderungsbereiche unterschiedliche kognitive Ansprüche von kompetenzbezogenen mathematischen Aktivitäten. Die allgemeinen mathematischen Kompetenzen manifestieren sich in jedem einzelnen mathematischen Inhalt, d. h. allgemeine mathematische Kompetenzen und Inhalte sind untrennbar miteinander verknüpft (in der Abbildung durch ein Raster angedeutet). Man wird erst dann vom hinreichenden Erwerb einer allgemeinen mathematischen Kompetenz sprechen, wenn diese an ganz unterschiedlichen Leitideen in allen drei Anforderungsbereichen erfolgreich eingesetzt werden kann.

Für den Erwerb der Kompetenzen ist im Unterricht auf eine Vernetzung der Inhalte der Mathematik untereinander ebenso zu achten wie auf eine Vernetzung mit anderen Fächern. Aufgaben mit Anwendungen aus der Lebenswelt haben die gleiche Wichtigkeit und Wertigkeit wie innermathematische Aufgaben.

Die Entwicklung mathematischer Kompetenzen wird durch den sinnvollen Einsatz digitaler Mathematikwerkzeuge unterstützt. Das Potenzial dieser Werkzeuge entfaltet sich im Mathematikunterricht

  • beim Entdecken mathematischer Zusammenhänge, insbesondere durch interaktive Erkundungen beim Modellieren und Problemlösen,
  • durch Verständnisförderung für mathematische Zusammenhänge, nicht zuletzt mittels vielfältiger Darstellungsmöglichkeiten,
  • mit der Reduktion schematischer Abläufe und der Verarbeitung größerer Datenmengen,
  • durch die Unterstützung individueller Präferenzen und Zugänge beim Bearbeiten von Aufgaben einschließlich der reflektierten Nutzung von Kontrollmöglichkeiten.

MU digital: Aus Sicht der Bildungsforschung ...

Im Fach Mathematik bestehen riesige Chancen, durch einen guten Medieneinsatz die grundlegenden Werkzeuge und Techniken für mathematische Anwendungen beherrschen zu lernen. (…) Mathematische Zusammenhänge lassen sich mit dem Computer visualisieren. Man findet sie heutzutage auch schon oft in visueller Form, und deshalb muss man lernen, damit umzugehen.6

Timo Leuders

Prorektor für Forschung an der Pädagogischen Hochschule Freiburg

Ergebnisse einer Metaanalyse zeigen, dass Schülerinnen und Schüler im mathematisch-naturwissenschaftlichen Unterricht vom Einsatz digitaler Medien profitieren können. Insbesondere deuten sich folgende Implikationen für den MINT-Unterricht an:7

  • Digitale Medien haben im MINT-Unterricht einen größeren positiven Einfluss auf die Leistungen der Schülerinnen und Schüler, wenn sie ergänzend zu traditionellen Unterrichtseinheiten eingesetzt werden als wenn sie diese ersetzen.
  • Der Einsatz digitaler Medien scheint erfolgreicher zu sein, wenn Schülerinnen und Schüler in Paaren und nicht alleine mit den Geräten arbeiten.
  • Wirken Lehrerinnen und Lehrer während der Arbeit mit digitalen Medien unterstützend, deutet sich ein größerer positiver Effekt an als wenn die Schülerinnen und Schüler ohne Hilfestellung arbeiten müssen.
  • Es deutet sich an, dass der sog. „Neuheitseffekt“ sich auch in der Leistung der Schülerinnen und Schüler bemerkbar macht: Kürzere Unterrichtssequenzen mit digitalen Medien haben einen größeren positiven Effekt als längere Sequenzen.
  • Es zeigt sich, dass Schülerinnen und Schüler von einer Ausbildung ihrer Lehrkräfte an den konkreten digitalen Geräten und der im Unterricht benutzten Software direkt profitieren können.
  • Der positive Einfluss digitaler Medien zeigt sich verstärkt, wenn die Schülerinnen und Schüler selbst an den Geräten und mit den Programmen arbeiten und diese nicht nur von den Lehrerinnen und Lehrern vorgeführt werden.

Hilfreich der kritische Blick von Markus Hohenwarter8:

Die Meinung, dass sich allein durch die Einführung neuer Technologien wie grafikfähiger Taschenrechner und Computer der Mathematikunterricht verbessern würde, ist aus heutiger Sicht sicherlich verfehlt. Die Hoffnung, dass neue Medien Lernerfolge schlagartig erhöhen können, hat es auch früher schon gegeben – sie war stets vergebens. So haben zahlreiche Medien-Vergleichsstudien der letzten Jahrzehnte gezeigt, dass Lernerfolge de facto unabhängig vom verwendeten Medium sind. Die Medien haben an sich nur eine untergeordnete Bedeutung. Primär wichtig sind die an ihnen ausgeführten Aktivitäten. Medien, die nicht „bearbeitet“, sondern nur betrachtet werden können, haben daher nur sehr beschränkten Wert.

Und, abschließendes Resumee von Rainer Känders9:

In jedem Einzelfall müssen wir als Lehrerinnen und Lehrer mit unserem gesamten Fachverstand schauen, was ein digitales Hilfsmittel zur Begriffsentwicklung beitragen kann. Werkzeuge haben keinen Wert an sich. Mathematikunterricht beschäftigt sich mit der Entwicklung begrifflicher Systeme: Erst lokal, dann global und dazu gehören Explorieren, Entdecken, Raten, Analogisieren, Begründen, Beweisen, Ordnen, Exemplarizität, klärende Beispiele, gute Probleme, usw. Ab und zu ist GeoGebra oder vergleichbare Software hilfreich dabei. Zudem macht es Spaß und ist daher … eine der schönsten Nebensachen der Welt!

MU digital: ... Beispiele ...

Für den Mathematikunterricht der GOS gibt es eine Reihe von Veröffentlichungen.

Weitere Unterrichtsbeispiele enthält der Band Norbert Noster, Hans-Georg Weigand (Hrsg.): Mathematische Erkundungen – Praxiserprobte Unterrichtseinheiten mit digitalen Werkzeugen – 

Aus dem Vorwort: In vielen Beiträgen dieses Buches werden Unterrichtssequenzen zur Einführung eines neuen Begriffs beschrieben, wie zum Beispiel der Signifikanztests (S. 39) oder die irrationalen Zahlen (S. 23). Allerdings verbirgt sich hinter mathematischen Erkundungen unserer Ansicht nach weit mehr. So erhält das Erkunden spezieller Eigenschaften eines Begriffs eine eigene Kategorie. Dazu gehört neben der Untersuchung der Auswirkungen von Parametern auf die Binomialverteilung (S. 70) auch die Bestimmung der Kreiszahl π (S. 85). Weiterhin ist das Erkunden der Beziehungen eines Begriffs zu einem anderen Begriff wichtig, wenn es etwa darum geht, Funktionsterme mit Schaubildern in Beziehung zu setzen (S. 97) oder das exponentielle Wachstum in Abgrenzung zum linearen Wachstum zu betrachten (S. 139). Eine weitere bedeutende Kategorie stellt das Erkunden der Beziehung von Begriffen zur Umwelt dar. So kann die Frage nach der Dauer des Ladevorgangs des Akkus eines mobilen Telefons untersucht werden (S. 151), oder es kann erkundet werden, was elliptische Kurven sind und wie mittels dieser Nachrichten verschlüsselt werden können (S. 161). 

Und, nicht ganz unwichtig für uns Mathe-Lehrkräfte: Die Autoren haben Lösungsideen skizziert. Die CAS Befehle stammen aus der Casio-Systemwelt. Das ist opportun, wie ich finde, schließlich finanziert die Firma das Projekt MaLeNe (Mathematik-Lehr-Netzwerk). Im Übrigen ähneln viele Befehle denen der Geogebra- und TI-Systeme.

    Noch nicht ausgearbeitet, eher Ideenskizzen für einen sehr anspruchsvollen fächerübergreifenden Deeper Learning Ansatz.

    • BahnMining – Pünktlichkeit ist eine Zier, Vortrag von David Kriesel auf der 36. Chaos Communication Congress
      • Geeignet für ein fächerübergreifenden Projektunterricht in der Sekundarstufe II unter Beteiligung Mathematik (Statistik), Informatik und PoWi
      • Deeper Learning sagt: Von Verständnisfragen zum (sensationellen) Vortrag über ein Brainstorming (Verständigung über kleinere Data-Mining-Projekte) hin zur Implementation. Hierzu gibt es eine Anleitung des Autors (Vortragsfolien ab S. 28). Ich empfehle die abschließende Reflexion aufzuteilen: Lernprozess durch die Lehrkraft und Inhalt durch ein Peer- Assessment der SuS untereinander (ich habe damit im Informatikunterricht der Sek. II sehr gute Erfahrungen gemacht)
      • Was mir darüber hinaus gefällt:
        • Sehr praxisnah, weil sich der Vortrag auf reale Daten stützt.
        • Netiquette ist wichtiger Bestandteil des Vortrags: David ruft zurecht immer wieder zur Fairness auf. Wirklich erfreulich angesichts des Getöses in den sozialen Netzwerken…

    MU digital: ... Blick ins Ausland

    Ich hatte in einem meiner früheren Magazinbeiträge den Aufbau regionaler Netzwerke angeregt. Sie können hier helfen, die Überlegungen mit Lehrkräften anderer Schulen zu diskutieren. In Ottawa (Kanada) habe ich einmal ein solches Netzwerk kennengelernt. In ihm sind neben den Schulen Firmen und die kommunale Selbstverwaltung vertreten. 

    In vielen nordamerikanischen Schulen ist die Nutzung von Grafikinformationssystemen (GIS) curricular verankert. Mit dem GIS ist es möglich, die Region bzw. den Ort wie auf einer Landkarte zu suchen und durch entsprechende Markierung solange zu vergrößern, bis man abschließend auf die textuell hinterlegten Informationen stößt. In Ottawa gab es eine Reihe von GIS- Software herstellenden Firmen. Sie suchten seinerzeit immer wieder konkrete Anwendungs- und Testszenarien. In Absprache mit der Kommune wurden seitens der Firma Aufgaben gestellt, die die Schülergruppen umsetzen sollten. Die SuS entwickelten Apps zu:

    • Sightseeing in OttawaWas bietet Ottawa? Wie organisiere ich mir eine Museen-Tour? Wie sieht ein günstiger (Fuß-) Weg aus? Wann sind die Öffnungszeiten?
    • Verkehrsdichte im Ballungsbereich: Wann kommt es zu besonders gefährlichen Situationen wie Staus? Wie sieht zu unterschiedlichen Tageszeiten der günstigste Weg aus?
      Hier wurden von einer Schülergruppe eine Umfrage in ausgewählten Bezirken durchgeführt und Zahlen ermittelt, die entsprechende Rückschlüsse zulassen. Die für das Projekt verantwortlichen SuS erkannten dabei die hohen Gefährdungspotenziale für die befragten Einwohner und machten bei ihrer Befragung nicht nur auf den Datenschutz aufmerksam, sondern nahmen ihn auch so ernst, dass sie bereits bei der Umsetzung sehr verantwortungsvoll geeignete Sicherheitsmaßnahmen vorsahen. So musste z. B. verhindert werden, dass Unbefugte dieses System benutzten, um für jeden befragten Haushalt ermitteln zu lassen, wann das Haus verlassen wird und somit »frei« steht.

    Ich habe einmal mit meiner Homepage-AG (Sek. I/II) etwas Vergleichbares umgesetzt (Virtueller Rundgang in unserer Schule und Umgebung). Warum sollte das nicht auch im projektorientierten Mathematikunterricht möglich sein? 

    Außerhalb der Schulmauern und international aufgestellt: Das ist das Prinzip von MathCityMap

    MathCityMap verknüpft die „alte Idee“ der mathematischen Wanderpfade, also die Auseinandersetzung mit Mathematik an interessanten, realen Orten mit technischen Möglichkeiten wie GPS-Lokalisierung und mobilem Internetzugang. MathCityMap besteht aus einer Aufgabendatenbank, bei der jede Aufgabe mit GPS-Koordinaten versehen ist. Weiter ist MathCityMap eine webbasierte interaktive App, welche in der Lage ist, mit dem Benutzer in einfacher Form zu kommunizieren um z. B. Lösungshilfen zu geben oder die Lösung der Aufgabe zu kontrollieren. Ebenso ist es möglich, dass sich jeder (Lernende, Lehrer oder Privatpersonen) an der Aufgabenentwicklung beteiligen kann und so eine MathCityMap Community  entsteht10.

    Schlussbemerkung

    Es macht viel Sinn, die Ausflüge in die digitale Welt mit einem Medienkonzept zu begleiten, denn sonst läuft man Gefahr, dass lehrkraftabhängig die eine Lerngruppe die oben vorgestellten Unterrichtsbeispiele kennenlernt, und die andere eben nicht. Bärbel Barzel hat sich dazu im Rahmen eines Vortrags einige Gedanken gemacht. Auch hier gilt: Es werden Ideen vorgestellt, die fachschaftsindividuell diskutiert gehören. Der Verdienst der Kollegin liegt ganz sicher darin, dass wir nicht bei null anfangen müssen …

     

    Bildnachweis: Oberholster Venita by pixabay